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CHAPTER 1

Introduction

e [ixperimenters choice before fast computers

o Describe an accurate model which would
usually preclude the computation of explicit
answers

o or choose a standard model which would
allow this computation, but may not be a
close representation of a realistic model.

e Such problems contributed to the develop-
ment of simulation-based inference
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1.1 Statistical Models

Example 1.1.1 —Censored data models—
— are missing data models where densities are
not sampled directly.

In a typical simple statistical model, we would

observe

The distribution of the sample would then be
given by the product

10 f(y:]6)

Inference about 8 would then be based on this
distribution.

With censored random variables the actual
observations are

Y. = min{Y;, u}
where % is censoring point.
As a particular example, if
X ~ N(6,0%)andY ~ N (u, p?),
the variable
Z=XAY =min(X,Y)
is distributed as
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where ¢ and @ are the density and cdf of the
normal N (0, 1) distribution.
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Similarly, if
X ~ Weibull(a, §),
with density
f(x) = afBz"~" exp(—Fz®)
the censored variable
Z =X ANw, wconstant,
has the density
f(z) = afze 7 I[Zgw+</woo aﬁxae_ﬁx&d@ 0u(2) ,

where d,(+) is the Dirac mass at a. |
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Example 1.1.2 —Mixture models—
Models of mixtures of distributions are based
on the assumption

X ~ f; with probability p;,
for y =1,2,...,k, with overall density
X ~pfilz) + -+ piefi() -

If we observe a sample of independent random
variables (X1, -+, X,,), the sample density is

ii {p1fi(@i) + - +prfulzi)}

Expanding this product shows that it involves
k" elementary terms, which is prohibitive to
compute in large samples. |
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Example 1.1.3 —Student’s ¢t distribution—
An reasonable alternative to normal errors is
the Student’s ¢ distribution, denoted by 7 (p, 8, o),
which is often more “robust” against possible
modeling errors (and others). The density of

T (p, 0, 0) is proportional to

(z — @)2 —(p+1)/2
po? )

)

o1 (1 +

If p is known and the parameters # and o are
unknown, the likelihood is

L 0)2
o' Il (1+ (@ 20> ) :
i=1 po
This polynomial of degree 2n may have n local

minima, each of which needs to be calculated
to determine the global maximum.
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[llustration of the multiplicity of modes of the
likelihood from a Cauchy distribution C(6, 1)
(p = 1) when n = 3 and X; = 0, Xy = 5,
X3=09. |

5.5in5.5in /work /short /memev22 /figures /bmp /cauchy.bmp

Figure 1.1.1. Likelihood of the sample (0,5,9) from the distribution C(6,1).



CHAPTER 2

Random Variable Generation

e We rely on the possibility of producing (with
a computer) a supposedly endless flow of ran-
dom variables (usually iid) for well-known
distributions.

e We look at a uniform random number gener-
ator and illustrate methods for using these
uniform random variables to produce ran-
dom variables from both standard and non-
standard distributions
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2.1 Basic Methods

2.1.1 Desiderata and Limitations

«Any one who considers arithmetical methods of reproduc-
ing random digits is, of course, in a state of sin. As has been
pointed out several times, there is no such thing as a ran-
dom number—there are only methods of producing random
numbers, and a strict arithmetic procedure of course is not
such a method.” —John Von Neumann (1951)

The problem is to produce a deterministic
sequence of values in [0, 1] which imitates
a sequence of #2d uniform random variables
U[O,l]-

Can’t use the physical imitation of a “ran-
dom draw” (no guarantee of uniformity, no
reproducibility)

random sequence in the following sense: Hav-
ing generated (X1, - - -, X,,), knowledge of X,
lor of (X4,---,X,)] imparts no discernible
knowledge of the value of X, 1.

Of course, given the initial value X, the sam-
ple (X1, .-+, X,) is always the same.

the validity of a random number generator is
based on a single sample X7, - - -, X,, when n

tends to 400 and not on replications (X, - - -

(Xot, -+, Xon)y oo o (Xg1, - -+, Xpn) where n
is fixed and £ tends to infinity:.

In fact, the distribution of these n-tuples de-
pends on the manner in which the initial val-
ues X, (1 <r < k) were generated.

7X1n)7
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2.2 Transformation Methods

e The case where a distribution f is linked in a
relatively simple way to another distribution
that is easy to simulate.

Example 2.2.1 -Exponential variables—
It U ~ U1, the random variable

X =—logU/\
has distribution
P(X <z) = P(—logU < \z)
= P(U > e ™)
=1 —e M,

the exponential distribution Exp(\). |

e Other random variables that can be gener-

ated starting from an exponential include
©)

Y =-2 .il log(U;) ~ X3,
]:

Z—ﬁZIOg( i) ~ Gal(a, )

 log(Uj)

Y =
a+b log(U)

~ Be(a,b)
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2.3 Accept-Reject Methods

e There are many distributions from which it
is difficult, or even impossible, to directly
simulate.

e We now turn to another class of methods that
only requires us to know the functional form
of the density f of interest up to a multiplica-
tive constant.

e The key to this method is to use a simpler
(simulation-wise) density ¢g from which the
simulation is actually done.

o For a given density g
— the nstrumental density

o there are many densities f
—the target densities

which can be simulated this way:.



2.3] ACCEPT-REJECT METHODS 15

e We first look at the Accept-Reject method.

o (Given a density of interest f,
o find a density g and a constant M such that

flz) < Mg(x)
on the support of f.

o Algorithm A.1 —Accept-Reject Method—

1. Generate X ~ g, U ~Ujpy ;
2. Accept Y =X if U < f(X)/Mg(X)

)

3. Return to 1. otherwise.

This produces a variable Y distributed
according to f.
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e This Algorithm has two interesting proper-
ties.

o First, it provides a generic method to sim-
ulate from any density f that is known up
to a multiplicative factor.
¢ This property is particularly important in

Bayesian calculations. There the posterior
distribution is

mw(0|z) < w(0) f(x|d) .

which is easily specified up to a normaliz-
Ing constant

o A second property of the lemma is that the
probability of acceptance in the algorithm
is exactly 1/M.

¢ The expected number of trials until a vari-
able is accepted is M
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Example 2.3.1 —Normal from a Cauchy—

@) = 5= exp(~a*/2)
and L1
glx) = 71+ 22

densities of the normal and Cauchy distribu-
tions.

ﬁi)) — E(l +a?) e < E = 1.52

attained at x = +1.

e So the probability of acceptance 1/1.52 =
0.66, and, on the average, one out of every
three simulated Cauchy variables is rejected.

e The mean number of trials to success is 1.52.
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Example 2.3.2 Gamma with non-integer
shape parameter

e This illustrates a real advantage of the Accept-
Reject algorithm.

e the gamma distribution Ga(a, ) can be rep-
resented as the sum of o exponential random
variables.

e This is impossible if « is not an integer

e Can use the Accept-Reject algorithm with
instrumental distribution

Ga(a,b), with a =|a], «a > 0.
(Without loss of generality, 6 = 1.)

e Up to a normalizing constant,
a— a a—a
— b—CL a—a L 1_b < b—CL -
=7 expl~(1-bo} <570 (0
for b < 1.
The maximum is attained at b = a/a.
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Example 2.3.3 Truncated Normal dis-
tributions.

e Truncated Normals appear in many con-
texts

e When constraints x > p produce densities
proportional to

6_(37_#)2/20-2 ]]::L’ZH

for a bound p large compared with p,

o there are alternatives which are far supe-
rior to the naive method of generating a
N (p, 0%) until exceeding .

o This approach requires an average number
of 1/®((pu—p) /o) simulations from N (u, 0%)
for one acceptance.

e An instrumental distribution is the translated
exponential distribution, Exp(a, p), with den-
sity

ga(2) = ae W,

e The ratio f/g, is then bounded by

£/ga < 1/a exp(a?/2 —ap) if a > p,
o = 1/a exp(—u?/2) otherwise.






CHAPTER 3

Monte Carlo Integration

e T'wo major classes of numerical problems that
arise in statistical inference

o optimization - generally associated with
the likelihood approach

o Integration- generally associated with the
Bayesian approach
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3.1 Importance Sampling

e Simulation from f (the true density) is not
necessarily optimal, in fact, it is usually sub-
optimal.

e The alternative to direct sampling from f is
importance sampling.

Definition 3.1.1 The method of importance
sampling is an evaluation of

Efh(O)] = fy hle) f(x) da

based on generating a sample X, ..., X, from
a given distribution g, and approximating
1w f(X))
This method is based on the alternative rep-
resentation
f (@)

B[] = fy [ble) 2 gla) o

nXj;) .
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e The estimator

(X)) ~

1 m f(X))
m = g(X;)

— [y h(z) f(x) dx

h(X;)

o converges for same reason the regular Monte
Carlo estimator h,, converges:

o converges for any choice of the distribution
g [as long as supp(g) D supp(f)].

o The instrumental distribution g can be cho-
sen from distributions that are easy to sim-
ulate.

o The same sample (generated from g) can
be used repeatedly, not only for different
functions A but also for different densities

f.
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Example 3.1.2 —Student’s ¢t distribution—

Consider X ~ 7 (v, 0, 0%), with density

_ ['((v+1)/2) (2 — (9)2 —(v+1)/2
N ZI T (1 R ) .

Without loss of generality, take 8 = 0, 0 = 1.

e Calculate the integral

ha 2’ f(x)dzx.

e Simulation possibilities

N(0,1)

V3

o Importance sampling using Cauchy C(0, 1)

o Importance sampling using a normal
(expected to be nonoptimal).

o Importance sampling using a U([0, 1/2.1])

o Directly from f, since f =
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e The figure shows

o Uniform is best
o Cauchy is OK
o f and Normal are rotten

25
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Markov Chains

e Use of Markov chains

o Many algorithms can be described as Markov
chains

e Needed properties

o The quantity of interest is what the chain
converges to

e We need to know

o When will chains converge
o What do they converge to

4.1 Basic notions

e A Markov chain is a sequence of random
variables that can be thought of as evolving
over time.

e The probability of a transition depending on
the particular set that the chain is in

e We define the chain in terms of its transition
kernel, the function that determines these
transitions.
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Definition 4.1.1 A transition kernelis a func-
tion K defined on X' x B(X) such that

(i) Vo € X, K(z,-) is a probability measure;
(ii) VA € B(X), K (-, A) is measurable.

e When X is discrete, the transition kernel
simply is a (transition) matrix K with ele-
ments

P, =PX,=ylX,-1=2), x,y € X.

e In the continuous case, the kernel also de-
notes the conditional density K (z,z") of the
transition K (x,-). That is,

P(X € Alz) = [, K(z,2")dx’

Definition 4.1.2 Given a transition kernel
K, a sequence Xy, X1,...,X,,...of random
variables is a Markov chain, denoted by (X,),
if, for any ¢, the conditional distribution of X,
given Ty_1, Ty_9, ..., xo 1s the same as the dis-
tribution of X; given x;_;. That is,

P(Xy41 € Alxg, 21,20, . . ., Tp)
= P(Xk+1 c A‘Zlﬁw
= [, K(z, dz)
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4.2 Ergodicity and convergence

e We consider: to what is the chain converg-
ing?

e The invariant distribution 7 is the natural
candidate for the limiting distribution

e A fundamental property is ergodicity, or in-
dependence of initial conditions.

o In the discrete case with a state w is ergodic
if

Tim, K™ (w,w) = m(w)] = 0.

e In general , we establish convergence using
the total variation norm,

|1 — w27y = sup 11(A) — pa(A)).

e and we want

I/ K"z, )ulde) =7 |7

= Sljlp!/ K"(x, A)p(dx) — m(A) |

to be small.
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Theorem 4.2.1 If (X,,) is Harris positive
recurrent and apertodic, then

liny [/ K"z, -)ulde) =7 ||y = 0

n—a~oo
for every initial distribution L.

e We thus take “Harris positive recurrent and
aperiodic’ as equivalent to “ergodic’

e Convergence in total variation implies
Jim, [E,[R(X,)] — ETh(X)] = 0
for every bounded function h.

e There are difference speeds of convergence
o ergodic (fast)
o geometrically ergodic (faster)

o uniformly ergodic (fastest)
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4.3 Limit theorems

e Ergodicity determines the probabilistic prop-
erties of average behavior of the chain.

e But we also want to do statistical inference,
which must reason by induction from the ob-
served sample.

e The fact that || P]' — || is close to 0 does not
bring direct information about

X, ~ P"

e We need LLNs and CLT's

e The classical LLNs and CLTs are not directly
applicable due to:

o The Markovian dependence structure be-
tween the observations X

o The non-stationarity of the sequence.
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Theorem 4.3.1 Ergodic Theorem —LLN

If the Markov chain (X,,) is Harris recur-

rent, then for any function h with E|h| <
OO7

hm h /h

e To get a CLT, we need more assumptions.
e For MCMC, the easiest is reversibility

Definition 4.3.2 A Markov chain (X,,) is
reversible if for all n

X1 Xng2 ~ Xpg1| X

e So the direction of time does not matter.

Theorem 4.3.3 If the Markov chain (X,,)
1s Harris recurrent and reversible,

v (2 ) — R} A (059).
where
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Monte Carlo Optimization

5.1 Introduction

e Differences between the numerical approach
and the simulation approach to the prob-
lem

e MO)

lie in the treatment of the function h.

e Using determanistic numerical methods, the
analytical properties of the target function
(convexity, boundedness, smoothness) are of-
ten paramount.

e For the simulation approach, we are more
concerned with h from a probabilistic (rather
than analytical) point of view.



34 MONTE CARLO OPTIMIZATION [5.1

Example 5.1.1 Minimization.
Consider minimizing
h(z,y) = (xsin(20y) + ysin(20z))? cosh(sin(10z)x)
+ ( cos(10y) — ysin(10x))? cosh(cos(20y )y) |
with global minimum 0 at (z,y) = (0,0).

e Many local minima.

e Standard methods may not find the global
minimum

e We can simulate from exp(—h(x,y)).

e Get the minimum from the resulting h(z;, y;)’s.

e Use the stochastic gradient method with our
test function

e Results of three stochastic gradient runs for
the minimization of the function A in Exam-
ple 5.1.1 with different values of (o, 3;) and
starting point (0.65,0.8). The iteration T is
obtagined by the stopping rule |07 —07_1]| <
107,
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hindin /work /short /mcmev22 /figures /bmp /grid,az.bmp

Figure 5.1.1. Grid representation of the function h(z,y) of Example 5.1.1 on [—1,1]>.

Q; 1/107 1/1005  1/10log(1 + j)
3 1/107 1/100 1/j
Or  (—0.166,1.02) (0.629,0.786) (0.0004,0.245)
h(6r) 1.287 0.00013 4.24 x 1070
ming h(6;) 0.115 0.00013 2.163 x 1077

[teration 50 93 H&
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e Simulated Annealing
o This name is borrowed from Metallurgy: A
metal manufactured by a slow decrease of
temperature (annealing) is stronger than a
metal manufactured by a fast decrease of
temperature.

e Fundamental idea: A change of scale, called
temperature, allows greater exploration h

e Rescaling partially avoids trapping in local
maxima.

e GGiven a temperature 1" > 0, generate

01,05 ~ m(0) o< exp(h(0)/T)
and approximate the maximum of h.
o As T | 0, the values simulated concentrate

in a narrower and narrower neighborhood
of the local maxima of h
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e The Algorithm proposed by Metropolis et
al. (1953).

e Starting from 6,

o ( ~ uniform in a neighborhood of 6

o the new value of 6 is generated by:
g, — {C with probability p = exp(Ah/T) A1
6y with probability 1 — p,
where Ah = h(¢) — h(6)). .

e Therefore,

o if h(¢) > h(6y), C is accepted with proba-
bility 1

oif h(¢) < h(6y), ¢ may still be accepted
with probability p £ 0

e So if Ay is a local maximum of h, the al-
gorithm escapes with a probability that de-
pends on 7T’

e Usually, the simulated annealing algorithm
modifies the temperature 1" at each iteration.
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e The EM Algorithm

e introduced by Dempster et al. (1977) to over-
come the difficulties in maximizing likelihoods

e taking advantage of the representation
= |, f(x,2|0)dz

and solvmg a sequence of easier maximiza-
tion problems whose limit is the answer to
the original problem.

e M algorithm relates to MCMC algorithms
in the sense that it can be seen as a forerun-
ner of the Gibbs sampler in its Data Augmen-
tation version, replacing simulation by max-
1mization.

e Suppose that we observe X7, ..., X, iid from
g(x]0) and want to compute

0 = arg max L(0|x) = ﬁlg(zviw).

e We augment the data with z, where X, Z ~
f(x,z]f) and note the identity

f(x,2|0)
g(x|6) -
where k(z|0,x) is the conditional distribu-

tion of the missing data Z given the observed
data x.

k(z|0,x) =
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e This identity leads to the following relation-
ship between the complete-data likelihood

L4(0]x2) = f(x,2]0)
and the observed data likelihood
L(0|x).

For any value 6,

log L(0|x) = IEg|log L(0|x,z)|00, x|

_]EHO [1Og k(Z‘@, X) ‘907 X]a
where the expectation is with respect to k(z|6, x).

e the strength of the EM algorithm is that we
only have to deal with the first term on the
richt side above, as the other term can be
ignored.

e The likelihood is increased at every iteration
- there are convergence guarantees
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e Denote the expected log-likelihood by
Q016, %) = gy log (8], 2) 6, x].

e a sequence of estimators é(j), 7=1,2,...,18
obtained iteratively by

Q(é(j)‘é(j—l): X) — meax Q(9|é(j—1)7 X)-

Algorithm A.2 —The EM Algorithm—

1. (the E-step) Compute
Q((g‘@(m), X) — Eé [log LC<6’X7 Z)] )

(m)
where the expectation is with respect

to k(z|0,,,x) .

2. (the M-step) Maximize Q(0|0(,),x) in 0
and take

Bty = g max. Q6] ).

The iterations are conducted until a fixed point

of () is obtained.
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Example 5.1.2 Censored data
If f(z—0)isthe N (0, 1) density, the censored
data likelihood is

LI6x) = e (= £ o= 02 11— o -0

and the complete-data log-likelihood is

1 m 1 =n
log L(0]x,2) x —= 3 (2,—0)°—= ¥ (2—0)*,
2 i=1 2 i=m+1
where the z;’s are observations from the trun-
cated Normal distribution

R (it B Gt
M0 = el = 0o — 0] T 1 0(a - )

At the jth step in the EM sequence, we have

- 1 m
Q(8|9(]-),X) X —5 > (:IJZ — (9)

1=1

a < z.

22 m—l—l
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Differentiating with respect to 6 yields

A mx + (n — m)E[Z\é(])]
e(j—l-l) — n )

where

e  pla—iy)
]E[Z|9(j)]:/ zk(z|<9(j),x)dz:9(j)+ U)

a

Thus, the EM sequence is defined by

A m_ n—m|; gp(a—é(j))

9 ) — 733—’_ 9 ) ~ 3
U+ — n (7) | — d(a— 0

which converges to the MLE 6. |

e A (sometime) difficulty with the EM algo-
rithm is the computation of Q (6|6, x).

e 'To overcome this difficulty, use

R 1 m
Q0100 %) = - $ log L°(0]x, 2)

m

where Z1, ..., Z,, ~ k(z|x,0).

e When m — o0, this quantity converges to

Q(00y, x).
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The Metropolis-Hastings Algorithm

6.1 Monte Carlo Methods based on Markov Chains

e We know it is not necessary to use a sample
from the distribution f to approximate the

integral
| h@)f(z)dz

e Now we obtain Xi,..., X, ~ f (approx)
without directly simulating from f.

o We use an ergodic Markov chain with sta-
tionary distribution f

e For an arbitrary starting value =%, an er-
godic chain (X®) is generated using a tran-
sition kernel with stationary distribution f

e This insures the convergence in distribution

of (X)) to a random variable from f.

To)

e For a “large enough” Ty, X0 can be con-

sidered as distributed from f

e We thus produce a dependent sample X (70 X (To+)
which is generated from f.
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6.2 The Metropolis—Hastings algorithm

e The algorithm starts with the objective (tar-
get) density f

e A conditional density q(y|x), called the in-
strumental (or proposal) distribution, is then
chosen.

e Algorithm A.3 —Metropolis—Hastings—

Given z!¥),
1. Generate Y; ~ g(y|lz™").
2. Take
(1) {Yt with prob. p(z®,Y}),
" with prob. 1— p(z.Y}),
where

fy) a(zly) )1} |

plzy) = min {f(:v) o)



6.2 ] THE METROPOLIS-HASTINGS ALGORITHM 45

Example 6.2.1 —Saddlepoint tail area
approximation—

e Saddlepoint approximation are useful for non-
central chi squared tail areas.

e An alternative is to sample 21, ..., Z,,, from
the saddlepoint distribution, and use
P(X > a)
00 n\1/2 1/2
= Ji (o) R @] exp {n [Kx(t) =tk (0] e
1 m
~ — I Zz T ,
= 217> #(a)

o where Kx(7) is the cumulant generating
function of X

o 7(x) is the solution of K'(7(x)) = x .

e We can derive an instrumental density to use
in a Metropolis—Hastings algorithm. Using a
Taylor series approximation,

exp {n [Kx(t) — tKx(t)]} ~ exp {_an(m)tQ}

o a first choice for an instrumental density is

the N(0,1/nK%(0))
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e Use M-H with normal candidate density and
K5 (1) = 2[p(1 — 2t) 4+ 4] /(1 — 2t)°.

o The same set of simulated random variables
are used for all calculations.

o We avoid calculating the saddlepoint nor-
malizing constant

e Monte Carlo saddlepoint approximation of a
noncentral chi squared integral for p = 6 and

A = 9, based on 10,000 simulated random
variables.

interval  renormalized exact Monte Carlo

saddlepoint
(36.225, 00) 0996 1 0992
(40.542, c0) 0497 .05 0497

(49.333, 00) 0099 01 0098
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e There are many other algorithms

o Adaptive Rejection Metropolis Sampling
o Reversible Jumps

o Langevin algorithms

o to name a few...






CHAPTER 7

The Gibbs Sampler

7.1 General Principles

e A very specific simulation algorithm based
on the target f.

e Uses the conditional densities fi,.. ., f, from

f
e Start with the random variable X = (X1, ..., X))

e Simulate from the conditional densities,
Xz"iﬁl, L2y ooy Li—1, Lj41y---,Lp
~ filxi|ley, Toy oo Tis1, Tig1, -, Tp)
fore=1,2,...,p.



50 THE GIBBS SAMPLER [71

e Algorithm A.4 —The Gibbs sampler—

Given x® = (21", ... ,zil)), generate

1. X1(t+1) ~ fl(xllxg)v cee 737(75))7'

p
5. X2(t+1) N fz(@‘xgtﬂ)? a:;(f), . 7%(;))7
p. X}gtH) ~ fp(xp\x(ltﬂ), . ,x](,tjll)),

then XD X ~ f.

o The densities fi,..., f, are called the full
conditionals

o these are the only densities used for simu-
lation

o Thus, even in a high dimensional problem,
all of the simulations may be univariate
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Example 7.1.1 —Cauchy-normal —
Consider the density
e

N N i

This is the posterior distribution resulting from
the model

X0 ~N(6,1) and 0 ~ C(6, 1).

—62/2

The density f(0|6y) can be written as the
marginal density

el@o /() —92/2 e—[1+(9—90)2] n/2 nv—l dna
and can therefore be completed as

—0%/2 e—[1+(9—90)2] n/2 nu—l’

which leads to the conditional densities

g(0,m) < e

1+ (0 — 6p)*
n(nlf) = Ga v, 20,
B (9077 1
o) = [,

Note that the parameter n is completely mean-
ingless for the problem at hand but serves to
facilitate computations. ) |
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e The Gibbs sampler is particularly well suited
to hierarchical models.

e Such models naturally appear in Bayesian
analysis

Example 7.1.2 —Hierarchical models in

animal epidemiology—

e Schukken et al. (1991) obtained counts of the
number of cases of clinical mastitis in 127
dairy cattle herds over a one year period.

oX;, v = 1,---,m, denote the number of
cases in herd ¢

o X; ~ P(\;), where ); is the underlying rate
of infection in herd ¢

o Lack of independence here (mastitis is in-
fectious) might manifest itself as overdis-
persion.

o To account for this, they used the model

X; ~ P\)
Ai ~ Gala, 3)
Bi ~ IG(a,b),
o The Gibbs sampler
Ai ~ m(Ailx, @, 6i) = Galzi + a, [L+1/8]7)
Bi ~ 77(6@'|X7 o, a,b, >‘Z> — Ig<& +a, [)‘Z + 1/6]_1)
gives the posterior density of \;, m(\;|x, «)



CHAPTER 8

Diagnosing Convergence

8.1 Stopping the Chain

e Convergence results do not tell us when to
stop the MCMC algorithm and produce our
estimates.

e We now look at methods of controlling the
chain in the sense of a stopping rule to guar-
antee that the number of iterations is suffi-
cient.

e [rom a general point of view, there are three
(increasingly stringent) types of convergence
for which assessment is necessary.
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o Convergence to the Stationary Distribu-
tion
¢ a minimal requirement for an algorithm that
approximates simulation from f

o Convergence of Averages Here we are con-
cerned with convergence of the empirical av-
erage

1

= X h(8") — By [h(6)]

¢ This type of convergence is most relevant in
the implementation of MCMC algorithms.

o Convergence to wd Sampling

¢ This measures how close a sample (9?), el Hnt))
is to being iid.

¢ the goal is to produce variables 8; which are
(quasi-)independent.
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8.2 Monitoring Convergence to the Stationary Distribution

e Graphical Methods

e A natural empirical approach to convergence
control is to draw pictures of the output of
simulated chains

e This may detect deviant or nonstationary be-
haviors

e A first idea is to draw the sequence of the
6")’s against t

e However, this plot is only useful for strong
nonstationarities of the chain.
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Example 8.2.1 —Witch’s hat distribution—
Consider

m(0]y) oc {(1 - 6) o~ M) 4 51 T0(0), y e R
when 6 is in to the unit cube C' = [0, 1]%.

e This density has a mode which is very con-
centrated around y for small 0 and o
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e The strong attraction of the mode gives the
impression of stationarity for the chain

e The chain with initial value 0.9098, which
achieves a momentary escape from the mode,
is actually atypical.

e This example has become a benchmark to
evaluate the performances of different meth-
ods of convergence. control.

f
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8.3 Monitoring Convergence of Averages

o Multiple Estimates

Example 8.3.1 — Cauchy posterior — For
the posterior distribution

3 1

—62%/20° 11 .
i=1 1+ (6 — x;)?
a completion Gibbs sampling algorithm can
be derived by introducing three artificial vari-

ables, 11, 12, N3, such that

70|z, T, 73) X €

3
(6, m, M2, n3|x1, T2, 3) X e~ 0%/20° ,Hle_(1+(9_a’i)2)”'7i/2

Y

resulting in the Gibbs sampler (i = 1,2, 3)

1+ (9 —Clﬁz')z
=)
i ik 1

2ini+ o2 Zz'??zJFU_Q).

ni|0,x; ~ Exp (

9‘33173327333’771,7’]27773 ~ N(
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e The figure illustrates the efficiency of this al-
gorithm by exhibiting the agreement between
the histogram of the simulated #®)’s and the
true posterior distribution

e If the function of interest is A(6) = exp(—6/0),
the different approximations of IE,[h(6)] can
be monitored.
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e The figure graphs the convergence of four es-
timators versus 1" (plus one more).

e The strong agreement of Sy, S& indicates
convergence

e The bad behavior the importance sampler is

most likely associated with an infinite vari-
ance.



CHAPTER 9

Implementation in Missing Data Models

9.1 Introduction

e Missing data models are a natural applica-
tion for simulation

e Simulation replaces the missing data part so
that one can proceed with a “classical” infer-
ence on the complete model.

e The EM algorithm that Dempster et al. (1977)
first described a rigorous and general formu-
lation of statistical inference though comple-
tion of missing data.

e Now we illustrate the potential of Markov
Chain Monte Carlo algorithms in the analysis
of missing data models
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Example 9.1.1 — Probit Regression —

e Another situation where grouped data ap-
pears in a natural fashion is that of qualita-
tive models.

e We look at the probit model, often consid-
ered as a threshold model.

e We observe Y; ~ Bernoulli{0,1} and link
them to a vector of covariates x; by the equa-

tion
pi=o(x8), BeR.
where @ is the standard normal cdf.

e The Y,’s can be thought of as delimiting a
threshold.

o Assume there are latent (unobservable) con-
tinuous random variables Y;* where

V. — { 1 itY* >0,
" 10 otherwise.
o Thus, p; = P(Y; = 1) = P(Y* > 0), and
we have an automatic way to complete the
model —
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e (lven

o prior distribution N,(Gy, ) on [3
o the posterior distribution 7 (B|y1, - - -, Yn, T1, - - -, Tp)
is computed by

Algorithm A.5 —Probit posterior distribution—

1. Simulate

Yi ~ {N+<

2. Simulate
B N, (871 XX By + ), (57 XX
where

o N (p, 0% u) and N_(u,0? u) denote the
normal distribution truncated on the left in
u, and the normal distribution truncated on
the right in @, respectively

o X is the matrix whose columns are the x;’s.
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e Incomplete observations arise in numerous
settings.

o A survey with multiple questions may in-
clude nonresponses to some personal ques-
tions;

o A calibration experiment may lack obser-
vations for some values of the calibration
parameters;

o A pharmaceutical experiment on the after-
effects of a toxic product may skip some
doses for a given patient.

e The analysis of such structures is compli-
cated by the fact that the failure to observe
is not always explained.

e [f these missing observations are entirely due
to chance, it follows that the incompletely
observed data only play a role through their
marginal distribution.

e However, these distributions are not always
explicit and a natural approach leading to
a Gibbs sampler algorithm is to replace the
missing data by simulation.
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Example 9.1.2 -Non-ignorable non-response—

e Average incomes and numbers of responses/non-
responses to a survey on the income by age,
sex and marital status. (Source: Little and

Rubin 1987.)

Men Women
Age Single Married Single  Married
< 30 20.0 21.0 16.0 16.0
24/1 5/11 11/1 2/2
> 30 30.0 36.0 18.0 —
15/5 2/8 8/4 0/4

e The observations are grouped by average, and
we assume an exponential shape for the in-
dividual data,

Yasmi  ~  EXP(Ha.s.m)
with Ha,s;m — HO + Qg T 55 + Ym
where
ol <1< ngsm
o a, (a = 1,2) corresponds to age (junior /senior)
o B (s = 1,2) corresponds to sex (fem./male)
O Y (M = 1,2) corresponds to family (sin-
gle/married)
e The model is unidentifiable, but that can be
remedied by constraining ay = 31 = 1 = 0.
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e A more difficult and important problem ap-
pears when nonresponse depends on the in-
come, say in the shape of a logit model,

_ oplunt gl
1 + exp{wy + wly;ﬁ’m’i}’

Pa,s,m.i
where

Pa.s.m.i denotes the probability of nonresponse
and
(wp, wy) are the logit parameters.

e The likelihood of the complete model is

Na,s,m eXp{Z&k,S,mﬂwo T wlyz,s,m,i)}

i=1 1+ eXp{wo + wly;,s,m,z‘}

(HoFCtat-Botym) =

NS

a=1,2
s=1,2
,2

l
—_

m

X exp {—Ta,s,mya,S,m(MO + aq + Bs + Wm)}
where

O Z; sm.q 18 the indicator of a missing obser-
vation

O N sm 15 the number of people by category

o 1ysm 18 the number of responses by cate-
gory

O Y, s.m 18 the average of these responses by
category
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e The completion of the data then proceeds by
simulating
o The y; ¢ ;s from

ﬂ-(yz,s,m,i>
expi 2y g i (Wo + W1y s i)}

X exp(_ya,s,m,i ,ua,s,m> 1+ exp{’UJ() -+ wly;s,m,i}

Y

which requires a Metropolis—Hastings step.
o The parameters are simulated from

T (o + 0+ By 4 oo
5=1.2

1,2

X exp {—rajs,myay&m(uo + oy + B + %n)}

m

for pg, o, B9, v9, possibly using a gamma
instrumental distribution.

o And (wg, wy) from

Na,s,m eXp{Z;S,m’wa + wly;,s,m,z’)}

I 1II
i=1 14 exp{wy + wly&k,s,m,z‘}

»w Q

DO DO

1,
1,
1,
which corresponds to a logit model.

3
I
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9.2 Finite mixtures of distributions

o Mixtures of distributions
. k
flo)= % pi Flalg)

where p1+. ..+pr = 1, are useful in practical
modeling.

e They can be challenging from an inferential
point of view, that is, when estimating the
parameters p; and §;.

e The likelihood is quite difficult to work with,
being of the form

containing k™ terms.

e A solution is to take advantage of the miss-
ing data structure, and associate with ev-
ery observation x; an indicator variable z; €
{1,...,k} that indicates which component
of the mixture x; comes from. The demarginal-
ization (or completion) of the mixture model
is then

zi ~ Mi(Lp1, -1, ;|2 ~ f($|fz¢) :
e The likelihood of the completed model is

(€l oal) o 11 pe flwile)
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= ﬁ I py fzil&)

J=1 1;2;=j
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e A Gibbs sampler is then
Algorithm A.6 —Mixture simulation—

1. Simulate z; (i=1,...,n) from

P(zi=j)xp; f(wil)  (G=1...,k)
and compute the statistics

= .i L= njTj = 21 L=z .
2. Generate (j =1,...,k)
Ajoj + n;T;
~ T , A+ myl,
5 g’ )\ + j J

p ~ Dk(%er,---,%Jrnk)-

Example 9.2.1 — Normal mixtures — In
the case of a mixture of normal distributions,

N k o~ (@=1j)?/(27)

flz) = jgl pj N 7
the conjugate distribution on (u;, 7;) is
pilty ~ N (e, 7 g/)‘> TjQNzg (&;3’%)
and the two steps of the Gibbs sampler are as
follows —
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Algorithm A.7 —Normal mixture—
1. Simulate (¢ =1,...,n)
2~ Pl = j) o< pj exp {—(z; — )"/

and compute the statistics (j =

n n
n; = Z_; I.—;, njz;= Z_; L.—jxi, s

2. Generate

pj|Tj ~ N(

V- T 2

)\j—l—’nj 7)\j—l—’l”Lj
()\j+nj+3 ﬁj—l—S?

2
2 T
T] g 2 ) 2 )

p ~ Dp(vi+ny,..., % +nk) .

71
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Example 9.2.2 —Stochastic Volatility—

e Stochastic volatility models are popular in fi-
nancial applications, especially in describing
series with sudden changes in the magnitude
of variation of the observed values.

e They use a latent linear process (Y;*), called
the volatility, to model the variance of the
observables Y;.

o Let Y ~ N(O,J*Q) and, fort = 1,...,T,
define
{Yt* =0V + oty
Y = €Y;f*/2€t ;
where ¢ and € ~ N (0, 1).

e The observed likelihood L(g,c*|yo, ..., yr)
is obtained by integrating the complete-data
likelihood

LC(Q, 0*|yo, cos ,yT,yS, s ay:?>

T k¥ *
X exp—go{yfe Yt +yt}/2

(o) T exp— {(0i)? + 00 — o) /200

~
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e The figure shows a typical stochastic volatil-
ity behavior for c* =1 and o = .9.

e Likelihood and Bayesian inference on this model
can be done with the EM algorithm or the
Gibbs sampler

f



